view issue

Custom Processing: Today general-purpose processors from Intel and AMD dominate the landscape, but advances in processor designs such as the cell processor architecture overseen by IBM chief scientist Peter Hofstee promise to bring the costs of specialized system on a chip platforms in line with cost associated with general purpose computing platforms, and that just may change the art of system design forever.

February 1, 2007

Topic: System Evolution

  • View Comments
  • Print

More related articles:

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, John Wilkes - Borg, Omega, and Kubernetes
Though widespread interest in software containers is a relatively recent phenomenon, at Google we have been managing Linux containers at scale for more than ten years and built three different container-management systems in that time. Each system was heavily influenced by its predecessors, even though they were developed for different reasons. This article describes the lessons we’ve learned from developing and operating them.

Rishiyur S. Nikhil - Abstraction in Hardware System Design
The history of software engineering is one of continuing development of abstraction mechanisms designed to tackle ever-increasing complexity. Hardware design, however, is not as current. For example, the two most commonly used HDLs date back to the 1980s. Updates to the standards lag behind modern programming languages in structural abstractions such as types, encapsulation, and parameterization. Their behavioral semantics lag even further. They are specified in terms of event-driven simulators running on uniprocessor von Neumann machines.

John R. Mashey - The Long Road to 64 Bits
Shakespeare’s words often cover circumstances beyond his wildest dreams. Toil and trouble accompany major computing transitions, even when people plan ahead. To calibrate “tomorrow’s legacy today,” we should study “tomorrow’s legacy yesterday.” Much of tomorrow’s software will still be driven by decades-old decisions. Past decisions have unanticipated side effects that last decades and can be difficult to undo.

Today we’re going to talk about system on a chip and some of the design issues that go with that, and more importantly, some of the newer trends, such as the work that IBM is doing around the cell processor to advance the whole system on a chip processor. To that end, we’ve invited Peter Hofstee, Chief Scientist for the cell processor project that is being funded by IBM, Toshiba, and Sony, to talk to us today about how the whole system on a chip marketplace might change in the advent of the invention of the cell processor, and what technology is driving that.

Back to top


(newest first)

Leave this field empty

Post a Comment: