
Fixed-Width Binary Floating-Point Woes
by Terence Kelly (tpkelly@acm.org)
Supplement to “Retrofitting: Principles and Practice,” ACM Queue, Nov/Dec 2024.

$ cat fix_bin.c
#include <stdio.h>
int main(void) {

for (int n = 1; n <= 47; n++) {
float x = 1.0F; int i;
for (i = 1; i <= n; i++) x *= 0.1F; printf("%2d %51.50f", n, x);
for (i = 1; i <= n; i++) x *= 10.0F; printf(" %12.11f\n", x);

}
}
$ gcc -o fix_bin fix_bin.c
$ ./fix_bin
1 0.10000000149011611938476562500000000000000000000000 1.00000000000
2 0.01000000070780515670776367187500000000000000000000 1.00000011921
3 0.00100000004749745130538940429687500000000000000000 1.00000011921
4 0.00010000000474974513053894042968750000000000000000 1.00000011921
5 0.00001000000065687345340847969055175781250000000000 1.00000011921
...

40 0.00000000000000000000000000000000000000010000086231 1.00000858307
41 0.00000000000000000000000000000000000000000999966584 0.99996656179
42 0.00000000000000000000000000000000000000000100052710 1.00052714348
43 0.00000000000000000000000000000000000000000009949219 0.99492156506
44 0.00000000000000000000000000000000000000000000980909 0.98090898991
45 0.00000000000000000000000000000000000000000000140130 1.40129852295
46 0.00000000000000000000000000000000000000000000000000 0.00000000000
47 0.00000000000000000000000000000000000000000000000000 0.00000000000

Figure 1: Fixed-width binary arithmetic mishaps

The C program in Figure 1 demonstrates wayward fixed-width binary floating-point
arithmetic. It naı̈vely computes x = 0.1n×10n for n ranging from 1 to 47. Mathematically,
of course, 0.1n×10n = (0.1×10)n = 1n = 1, but the output shows that float ops aren’t
mathematical.

The outer loop iterates over values of n, printed in the left-hand output column. The
first inner for loop sets x← 0.1n (middle column) and the second inner loop multiplies
by 10n to obtain the final result (right). The final result is quite close to 1.0 for small n
values. As n increases, however, the intermediate result dwindles toward underflow as
bogosity balloons in the final result. By n = 43 the error is uncomfortably large. At n = 44
the final result is low by nearly 2%, then at n = 45 it’s 40% too high. Finally at n = 46
it drops to zero and stays there. Replacing the float variable with a double or long
double would postpone the inevitable for a little while, but the fundamental limitations of
fixed-width representations would remain.

The calculation in Figure 1 is admittedly contrived, but it illustrates nasty surprises
that can arise naturally in practical computations such as compound interest calculations
and polynomial evaluation. Numerical gotchas can also plague seemingly mundane sum-
mations over large streams of widely varying values. Is there an easy way to avoid such
hazards?

mailto:tpkelly@acm.org


$ cat arb_dec.bc
scale = 47
for (n = 1; n <= scale; n++) {

x = 1.0
for (i = 1; i <= n; i++) x *= 0.1; print n, " ", x
for (i = 1; i <= n; i++) x *= 10.0; print " ", x, "\n"

}
halt
$ bc -ql arb_dec.bc
1 .10 1.000
2 .010 1.00000
3 .0010 1.0000000
4 .00010 1.000000000
5 .000010 1.00000000000
...

40 .00000000000000000000000000000000000000010 1.0000000000000000...
41 .000000000000000000000000000000000000000010 1.000000000000000...
42 .0000000000000000000000000000000000000000010 1.00000000000000...
43 .00000000000000000000000000000000000000000010 1.0000000000000...
44 .000000000000000000000000000000000000000000010 1.000000000000...
45 .0000000000000000000000000000000000000000000010 1.00000000000...
46 .00000000000000000000000000000000000000000000010 1.0000000000...
47 .00000000000000000000000000000000000000000000001 1.0000000000...

Figure 2: Arbitrary-precision decimal arithmetic with bc

The bc script of Figure 2 performs the calculation intended in Figure 1. This time
the final result is boring, repetitive, and correct for all n values because bc has a decisive
advantage over fixed-width formats: It can tailor the number of digits after the decimal
point in each variable—bc’s internal scale parameter—to the needs of the computation
at hand.


