
Systems @ Facebook Scale

Ben Maurer 
bmaurer@fb.com 

mailto:bmaurer@fb.com


About Me
▪ At Facebook since 2010 

▪ Co-founded reCAPTCHA 

▪ Tech-lead of Web Foundation team 

▪ Responsible for the overall performance & reliability of Facebook’s user-
facing products 

▪ Proactive — Design 

▪ Reactive — Outages



Facebook in 30 Seconds

Web Tier (HHVM)

Graph Cache (TAO) Newsfeed AdsMessages

Ranking Spam Search

Database (MySQL) Payments Trending Timeline

Load Balancer



Rapid Change
▪ Code released twice a day 

▪ Rapid feature development — e.g. Lookback videos 

▪ 450 Gbps of egress 

▪ 720 million videos rendered (9 million / hour) 

▪ 11 PB of storage 

▪ Inception to Production: 25 days



Proactive Design for Scaling
▪ Solve scaling problems only once 

▪ All Facebook projects in a single source control repo — easy code reuse 

▪ Folly: base C++ library 

▪ Thrift: RPC 

▪ Proxygen: HTTP(S) server 

▪ RocksDB: persistent key-value store

All open source!

https://github.com/facebook/folly
https://github.com/facebook/fbthrift
https://github.com/facebook/proxygen
http://www.apple.com


Efficient Synchronization



Producer/Consumer Queues

producer

producer

producer

consumer

consumer

consumer

consumer

consumer



How to Implement Producer/Consumer

▪ Obvious solution: pthread_cond_t

0

1.25

2.5

3.75

5

0 μs

4 μs

7 μs

11 μs

14 μs

Number of worker threads

50 100 200 400 800 1600 3200 6400

time context switches

3 context switches 
per item?!



Multiple Wakeups / Deque
pthread_cond_signal()	
  {	
  
	
  	
  lock(); 
	
  	
  ++futex;	
  
	
  	
  futex_wake(&futex,	
  1);	
  
	
  	
  unlock();	
  
} 

pthread_cond_wait()	
  {	
  
	
  	
  do	
  {	
  
	
  	
  	
  	
  int	
  futex_val	
  =	
  cond-­‐>futex	
  
	
  	
  	
  	
  unlock();	
  
	
  	
  	
  	
  futex_wait	
  (&futex,	
  futex_val);	
  
	
  	
  	
  	
  lock();	
  
	
  	
  }	
  while	
  (!my_turn_to_wake_up())	
  
}

Potential context switches



▪ FIFO: New work is schedule on the thread that has been idle longest 

▪ Bad for memory usage 

▪ Bad for the CPU cache 

▪ 3-5% CPU efficiency wins switching from FIFO to LIFO 

▪ Save memory by releasing resources from idle threads

FIFO

LIFO

Worker Thread Ordering

https://github.com/facebook/hhvm/blob/master/hphp/util/alloc.cpp#L40


LifoSem

▪ 13x faster. 12x fewer context switches

0

1.25

2.5

3.75

5

0 μs

4 μs

7 μs

11 μs

14 μs

Number of worker threads

50 100 200 400 800 1600 3200 6400

pthread time pthread context switches time context switches

https://github.com/facebook/folly/blob/master/folly/LifoSem.h


Synchronization Performance
▪ pthread_cond_t not the only slow synchronization method 

▪ pthread_mutex_t: can cause contention in futex spinlock. A different futex 
api could fix this 

▪ pthread_rwlock_t: Uses a mutex. Consider RWSpinLock in folly

http://lwn.net/Articles/606051/
https://github.com/facebook/folly/blob/master/folly/RWSpinLock.h


Managing Queues



▪ Deal with a burst of load 

▪ Processing speed > arrival speed 

▪ Increase reliability 

▪ Server is overloaded 

▪ Processing speed < arrival speed 

▪ Causes latency

Good queueing Bad queueing

                                    

   

   

   

   

   

   

   

   

   

   

   

Time

Qu
eu

e
                                    

   

   

   

   

   

   

   

   

   

   

   

Time

Qu
eu

e



Overload Handling Philosophy
▪ If you’re going to fail, fail quickly — prevents delaying the overall request 

▪ Servers should signal overload — OK to say “I can’t help you right now” 

▪ Order doesn’t matter — servers need not first-come-first-serve 

▪ Clients should defend themselves — don’t rely on the server 

▪ Complex knobs are tuned poorly — design parameter-free abstractions



Controlled Delay
▪ Inspired by CoDel algorithm to reduce buffer-bloat 

▪ Key insight: processing speed > arrival speed implies queues frequently 
become empty 

▪ Solution: Controlled delay logic 

▪ Check if the queue has been drained within the last N seconds 

▪ If not set queue timeout to 10-30ms

http://queue.acm.org/detail.cfm?id=2209336


Adaptive LIFO
▪ FIFO: “first in” request has already experienced the most latency —  

user may have abandon request. 

▪ Solution: switch to LIFO mode if large number of items in the queue

Last In

First In

First out First out

Low load High load

Controlled Delay will 
drain this if it persists



Concurrency Control
▪ Teach clients to protect themselves by recognizing when the services they 

talk to are unresponsive 

▪ Approach: measure & cap the number of active requests to a given service 

▪ Protects the throughput of a service that calls a heterogeneous set of other 
services



Listen Queue Overflow

SYN Backlog

Listen Queue

App

SYN

ACK

accept()

SYN Cookie

DROP!?



SYN Queuing: A Setting You Can Fix Today
sysctl	
  -­‐w	
  net.ipv4.tcp_abort_on_overflow=1	
  

▪ When Linux gets a SYN, if there are too many connections waiting to be 
accepted it will simply drop the packet 

▪ Theory: the client will see the packet was dropped, eventually retransmit 

▪ Practice: the server is overloaded. Trying again won’t help. Besides, it will 
usually take 1 second for the server to try again. 

▪ We open sourced a patch to do this better 

▪ This setting has stopped Facebook from going down 

https://gist.github.com/bmaurer/3f28bb73ab601f580f7a


Responding to an Incident



Keeping the big picture in mind
Focus on communicating and brainstorming 

Questions to ask 

▪ What is everybody doing right now? What’s our plan of attack? 

▪ What is the current hypothesis? What would prove/disprove that? 

▪ How can we quickly mitigate the impact? Can we revert? 

▪ Is there an alternate strategy we can pursue? 

▪ What will we need to do in 10 minutes? Can somebody start that? 

▪ Who else should we call?



Learning from an Incident
▪ Incidents are a great chance to improve the reliability of your system 

▪ Facebook does a weekly incident review. Many teams do their own internal 
reviews as well 

▪ Goals 

▪ Share knowledge of what happened 

▪ Document how the incident was handled 

▪ Come up with action items to make Facebook more reliable



How not to review an incident
▪ Make people feel bad about being “invited” 

▪ Everybody makes mistakes. Incident review is not about determining who 
is doing a bad job. It is to discover ways to improve 

▪ “Next time we’re not going to do that” 

▪ Well, obviously 

▪ Assume you’ll break things a different way next time. What can you fix 
generically?



DERP!
▪ Detection 

Did you detect the incident automatically? Did your alarms and dashboards 
let you quickly detect the issue? 

▪ Escalation 
Did the right people get involved quickly? If you had to call a different team 
to help with the issue, could they have been alerted automatically? 

▪ Remediation 
What did you need to do to fix the issue? Can these steps be automated? 

▪ Prevention  
What improvements could remove the risk of this type of failure happening 
again? How could you have failed gracefully or failed fast to reduce the 
impact of this failure.



Think bigger than yourself
▪ Common to think about action items that affect your team 

▪ Important to push global changes that make things safer for everybody 

▪ Example: rarely used but critical feature fails, not noticed in noise 

▪ Intuition: “we should really monitor failure for feature X” 

▪ Think bigger: “we should adjust our monitoring system to detect the 
percentage failure in more rarely used features” 

▪ Experienced incident members should surface these types of action items



How We Handle Facebook Scale
Proactive 
Create battle-tested abstractions that solve known scalability challenges. 
Make the easiest way to build services the most scaleable way. 

Reactive 
Avoid getting stuck during an incident by keeping the big picture in mind. 
Review incidents and ensure lessons learned used in the proactive mission.




